## catoolRT Knock Sensor Analysis

catoolRT can be used to indicate engine knock using either a cylinder pressure transducer or an engine mounted knock sensor. When fitted with both it can be used to tune the knock sensor location and to correlate to known in-cylinder knock pressure levels.

*Ref: Brunt, M., Pond, C., and Biundo, J., "Gasoline Engine Knock Analysis using Cylinder Pressure Data," SAE Technical Paper 980896, 1998.* 

| Configure DAQ                                       |                                           |                                                                                                       |                                                                                                                                   |                |
|-----------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
| Channel                                             | Device                                    | Channel Name                                                                                          | Туре                                                                                                                              | Add            |
| 沅 CYLPR1                                            | IFile<br>IFile<br>IFile<br>IFile<br>IFile | /Simulated/CYLPR1<br>/Simulated/CYLPR2<br>/Simulated/CYLPR3<br>/Simulated/CYLPR4<br>/Simulated/SPARK1 | Cylinder Pressure<br>Cylinder Pressure<br>Cylinder Pressure<br>Cylinder Pressure<br>Ignition Angle Meter                          | Edit<br>Delete |
| 武SPARK2<br>듔SPARK3<br>듔SPARK4<br>즀Clock<br>듔Trigger | IFile<br>IFile<br>IFile<br>IFile<br>IFile | /Simulated/SPARK2<br>/Simulated/SPARK3<br>/Simulated/SPARK4<br>ExtClock<br>ExtTrigger                 | Ignition Angle Meter<br>Ignition Angle Meter<br>Ignition Angle Meter<br>External Clock: 1800 pulses/rev<br>Trigger: 90.0 deg BTDC | Engine         |
|                                                     |                                           |                                                                                                       |                                                                                                                                   | Export<br>OK   |

Firstly we need to add a new channel for the knock sensor. Select "Acquisition" -> "Configure DAQ". Then click on the "Add" button and select "DAQ Channel" and click "OK". Then give the new channel a name such as "KNKB1" and click "OK".

| Add Channel: "KNKB1"                                                                                         |                                |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|
| Device<br>[IFile: "Simulated"<br>Channel<br>Simulated/KNKA1                                                  | Units<br>gl<br>Slope<br>1.0 /V |
| Input Configuration Range<br>Differential  Description Engine Block Acceleration for Cylinder 1 Channel Type | Offset<br>0.0                  |
| Engine Block Acceleration                                                                                    | <b>_</b>                       |
| TDC Offset 0.0 degrees                                                                                       | Cylinder                       |
| Rename Properties OK                                                                                         | Cancel                         |

Change the "Channel Type" to "Engine Block Acceleration" and change the "Units" to g, "Offset" to zero and "Slope" to that appropriate for your sensor. Bosch generally publish information for their sensors with a typical value of 35 mV/g.

$$slope = \frac{1000}{35 \text{ (mV/g)}} = 28.57 \text{ (}g/V\text{)}$$

| KNKB1 Propertie | s                  |              |                 |                 |   |        |        |
|-----------------|--------------------|--------------|-----------------|-----------------|---|--------|--------|
| Name            | Name KNKB1 Units g |              |                 |                 |   |        |        |
| Description     | Engine             | Block Accele | eration for Cyl | inder 1         |   |        |        |
| TDC Offset      | 0.0                | Туре         | Engine Block    | Acceleration    | ٦ | Cylind | er 1   |
| Offset Correct  | tion St            | art of Combu | istion Filterii | 1g Valve Events |   |        |        |
|                 | Туре               | FIR Band Pa  | ss              |                 | • |        |        |
| Lower Fre       | quency             | 5000         | Hz              |                 |   |        |        |
| Upper Fre       | equency            | 25000        | Hz              |                 |   |        |        |
|                 |                    |              |                 |                 |   |        |        |
|                 |                    |              |                 |                 |   |        |        |
|                 |                    |              |                 |                 |   |        |        |
|                 |                    |              |                 |                 |   |        |        |
|                 |                    |              |                 |                 |   | ОК     | Cancel |

Click on "Properties" and select the "Filtering" tab. Change the "Filter Type" to "FIR Band Pass" with a range of 5000 to 25000 Hz. The high pass aspect of the filter with remove any DC offset from the signal so it is centred around zero.

| Configure DAQ |        |                    |                                |          |
|---------------|--------|--------------------|--------------------------------|----------|
| Channel       | Device | Channel Name       | Туре                           | Add      |
| ₩ CYLPR1      | IFile  | /Simulated/CYLPR1  | Cylinder Pressure              | Edit     |
| तित CYLPR2    | IFile  | /Simulated/CYLPR2  | Cylinder Pressure              |          |
| TTT CYLPR3    | IFile  | /Simulated/CYLPR3  | Cylinder Pressure              | Delete   |
| 5 Tri CYLPR4  | IFile  | /Simulated/CYLPR4  | Cylinder Pressure              |          |
| 5 SPARK1      | IFile  | /Simulated/SPARK1  | Ignition Angle Meter           | Abasias  |
| 5 SPARK2      | IFile  | /Simulated/SPARK2  | Ignition Angle Meter           | Abscissa |
| 5 SPARK3      | IFile  | /Simulated/SPARK3  | Ignition Angle Meter           | Engine   |
| ₩ SPARK4      | TEile  | /Simulated/SP ARK4 | Ignition Angle Motor           |          |
| TIT KNKB1     | IFile  | /Simulated/KNKA1   | Engine Block Acceleration      |          |
| ní Clock      | 100    | EvtClock           | External Clock 1880 pulses/rev | Reset    |
| ,<br>Trigger  | IFile  | ExtTrigger         | Trigger: 90.0 deg BTDC         | Export   |
|               |        |                    |                                |          |
|               |        |                    |                                |          |
|               |        |                    |                                | OK       |

Click "OK" to return to the channel properties and "OK" to return to the "Configure DAQ" window. Select the new channel in the list and click "Abscissa...".

| Edit Absciss | a (KNKB) |                    |
|--------------|----------|--------------------|
| From         | То       | Resolution (dog)   |
| -180.0       | 180.0    | 0.2 deg (1800 PPR) |
|              |          | -                  |
|              |          |                    |
|              |          |                    |
|              |          | OK Cancel          |
|              |          | Cancel             |

Change the resolution to the smallest available, i.e. 0.2 degrees and the angular range from -180 to +180 degrees.



Now would be a good time to go online and check the raw accelerometer signal.

This shows two cycles. No knock (left) and with knock (right). Examine data from a range of engine speed and load conditions to determine crank angle windows where knock does and does not occur. In this example knock occurs between 20 and 60 degrees ATDC and there is a quiet window at 20 and 60 degrees BTDC. This quiet window should be free from noise from other cylinders combustion and valvetrain closing events.

| Compression Finish Angle    | -30            | Deg | - |
|-----------------------------|----------------|-----|---|
| Expansion Start Angle       | 60             | Deg |   |
| Expansion Finish Angle      | 100            | Deg |   |
| E Knock                     |                |     |   |
| Knock Integral Type         | Rectified      |     |   |
| PKP Start Angle             | 0              | Deg |   |
| PKP Finish Angle            | 40             | Deg | : |
| PKP Smoothing Range         | 2              | Deg |   |
| PKP Smoothing Resolution    | 0.2            | Deg | _ |
| Smoothed Pressure Method    | Moving Average |     |   |
| Checkel & Dale Start Angle  | 0              | Deg |   |
| Checkel & Dale Finish Angle | 40             | Deg |   |
| FFT Start Angle             | 20             | Deg |   |
| FFT Finish Angle            | 60             | Deg |   |
| Reference FFT Start Angle   | -60            | Deg |   |
| Reference FFT Finish Angle  | -20            | Deg |   |
| Cycle Classification        |                |     |   |

Select "Analysis" -> "Configure Analysis" and scroll to the "Knock" section. Configure the "FFT" and "Reference FFT" windows using the values determined above. These windows can also be used to calibrate your ECU knock control.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gram 🔘 3D D           | hagram                                                                                                         |                       |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| My Data<br>My Data<br>CA - Crank Ang<br>CYLPR1<br>CYLPR2<br>CYLPR2<br>CYLPR3<br>CYLPR3<br>CYLPR3<br>CYLPR4<br>SPARK4<br>SPARK4<br>CY-Cycle Bark4<br>CYL-Cycle Bark4<br>CY-Cycle Cyclere<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CYCUR4<br>CY | Cha<br>le cased Triff | annel Description<br>FFI Fourier Analysis for Cylinder 1<br>FFIRI Fourier Analysis (Reference Window) for Cyli | Units<br>-<br>nder1 - | OK<br>Canc |
| X-Axis<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                |                       |            |
| Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Channel               | Description                                                                                                    | Cycle                 |            |
| Data Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EET1                  | Fourier Analysis for Cylinder 1                                                                                | All                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FFTR1                 | Fourier Analysis (Reference Window) for Cylinder 1                                                             | All                   |            |
| 近 Data Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                |                       |            |

Now we can examine where in the frequency domain the primary knock mode occurs. The Fast Fourier Transformation (FFT) will show us which frequencies dominate the knock sensor signal. Add a new diagram (press F5), change the "X-Axis" to "Frequency" and select the knock sensor channel. Now select the FFT channel (double-click to add) and click "OK".



You can see how the band pass filter is already removing frequencies below 5000 Hz and above 25000 Hz. Again, this will help you to characterise the centre frequency that your ECU knock control uses.



If you are acquiring both cylinder pressure and knock sensor channels you can use them together to verify how well the sensor and its location can detect knock. Add a new diagram and change the "X-Axis" to "Cycle". Select the cylinder pressure channel and add the KNKMAX analysis channel.

| Select Channels                                                                                                                                                                                       |              |                                                                            |              |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|--------------|--------|
| 💿 Data List 🛛 💿 2D Diag                                                                                                                                                                               | ram 💿 3D Dia | igram                                                                      |              |        |
| 🛄 My Data                                                                                                                                                                                             | Char         | nel Description                                                            | Units        | ОК     |
| Data Acquisition                                                                                                                                                                                      |              | BF1 Knock Boss Factor for Cylinder 1                                       | -            | Cancel |
| C - Crank Angle     CYUPR1     CYUPR3     CYUPR3     CYUPR3     CYUPR3     CYUPR3     CYUPR3     SPARK1     SPARK1     SPARK4     O CY - Cycle Based     O CY - Cycle Based     O CYCDUR     O CYCERR |              | NKBUYTI Knock Boo Integral for Cylinder 1<br>1 Engine Speed for Cylinder 1 | g deg<br>RPM | Cancer |
| X-Axis                                                                                                                                                                                                |              |                                                                            |              | _      |
| KBF                                                                                                                                                                                                   |              |                                                                            | •            | J      |
| Y-Axis                                                                                                                                                                                                |              |                                                                            |              |        |
| Source                                                                                                                                                                                                | Channel      | Description                                                                | Cycle        |        |
| 🖒 Data Acquisition                                                                                                                                                                                    | KNKMAX1      | Peak Knocking Pressure for Cylinder 1                                      | All          |        |
|                                                                                                                                                                                                       |              |                                                                            |              | Add    |
| ·                                                                                                                                                                                                     |              |                                                                            |              | nemove |

Now select the knock sensor channel and right-click your mouse on the KBF analysis channel. Select "Add Analysis Type as X-Axis" and click "OK".



You can now see the correlation between knock detected by the cylinder pressure transducer (KNKMAX) and knock detected by the knock sensor (KBF). This can help determine the detection threshold and gain used by the ECU knock control. It can also be used to determine if a particular location on an engine block is suitable for knock detection on a particular cylinder.